Production of new radioactive beams ⁴²Ti, ³⁵K, ⁹C, ⁸B, and ²⁰O with MARS

B. T. Roeder, A. Saastamoinen, M. McCleskey, E. McCleskey, A. Spiridon, E. Koshchiy, G. Rogachev, H. I. Park, and R. E. Tribble

This year we produced and separated several new radioactive beams for the physics program at the Cyclotron Institute at Texas A&M University with the Momentum Achromat Recoil Separator (MARS) [1]. While the production tests for ³⁵K, ⁹C, and ⁸B were more or less straightforward, the production tests of the new ⁴²Ti and ²⁰O beams were challenging. Details about the production and separation of each of these beams are provided in this report. All of the beams in this report will be used in experiments in the coming year.

I. Production of ⁴²Ti secondary beam

In November 2013, we studied the production and separation of ⁴²Ti with MARS for the group of Prof. J.C. Hardy. ⁴²Ti is needed as part of his research group's continuing study of the lifetime and branching ratios for superallowed β -decays.

The nuclei for the superallowed β -decay studies are usually produced with the fusion-evaporation reaction (p,2n) in inverse kinematics with primary beam energies around 30 MeV/u. However, this reaction is not available in the case of ⁴²Ti because it is too far from the valley of stability in this region of the nuclear chart (A > 40). If a ⁴⁵Sc primary beam is used with the hydrogen gas target, the reaction p(⁴⁵Sc,⁴²Ti)4n requires much higher primary beam energy (> 50 MeV/u) and would produce ⁴²Ti at energies too high to be stopped efficiently inside the tape-transport system used for studying the superallowed β -decays. Further, ⁴⁵Sc primary beam is known have a relatively weak intensity, in particular when a high charge state is needed to produce this beam at this energy beam such as ⁵⁰Cr at 50 MeV/u with a thick ⁹Be target and produce ⁴²Ti with the projectile fragmentation reaction mechanism. However, this method, in addition to the high energies and weak beam intensities mentioned in the previous case, is also not a good choice because additional contamination from nuclei close to the ⁴²Ti would be produced with similar or higher intensities than the ⁴²Ti.

Thus, with the above considerations in mind, we decided to attempt to produce ⁴²Ti with ⁴⁰Ca primary beam and gas targets of ³He and ⁴He. ⁴⁰Ca beam is available with high intensity at beam energies from 5-40 MeV/u. Simulations of the ⁴⁰Ca+³He and ⁴⁰Ca+⁴He reactions were conducted with the LISE++ program [2] prior to the production test. These simulations suggested that ⁴²Ti would be produced with the most intensity at low beam energies (~10-15 MeV/u) with the fusion-evaporation reaction mechanism, but also that it would still be possible to produce ⁴²Ti with reasonable intensity at higher primary beam energies with the direct-transfer reaction mechanism. Given that a primary beam of at least 30 MeV/u is needed to implant the ⁴²Ti secondary beam into the tape-transport system, a primary beam energy of 32 MeV/u was chosen for the production test.

The results of the production tests for ${}^{4}\text{He}({}^{40}\text{Ca}, {}^{42}\text{Ti})2n$ and ${}^{3}\text{He}({}^{40}\text{Ca}, {}^{42}\text{Ti})n$ at 32 MeV/u are shown in Fig 1. ${}^{42}\text{Ti}$ was produced and separated with MARS in both reactions. For the ${}^{40}\text{Ca}+{}^{4}\text{He}$ case,

FIG. 1. (left panel) Results of the ⁴²Ti production test with the ⁴⁰Ca+⁴He reaction. Impurities in the secondary beam are also labeled. (right panel) Results of the ⁴²Ti production test with the ⁴⁰Ca+³He reaction. In the latter case, the impurities were found to be more intense.

with 2 atm of ⁴He gas at a temperature of 77 K in the MARS gas cell target, ⁴²Ti was produced at a rate of 7 events/nC. In that case, about 50% of the total secondary beam was made up of impurities, with the most intense contribution coming from ⁴⁰Sc produced at ~30% of the rate of the ⁴²Ti. For the ⁴⁰Ca+³He case, with 1 atm of ³He gas at a temperature of 77 K in the MARS gas target, ⁴²Ti was produced at a rate of 6.3 events/nC. This implies that the production rate with the ³He gas target could be higher than the ⁴He case if 2 atm of ³He gas were to be used. However, in the ³He target case, impurities in the secondary beam made up 63% of the total secondary beam intensity. Also, ⁴⁰Sc was produced in this case at a slightly higher rate (~7% higher) than the ⁴²Ti. Therefore, the ⁴He(⁴⁰Ca,⁴²Ti)2n production reaction was favored by Prof. Hardy's research group as it produced ⁴²Ti at an acceptable rate of ~1400 particles/sec (assuming ~200 nA of ⁴⁰Ca primary beam) and with less impurities in the secondary beam.

Prof. Hardy's research group made a preliminary measurement of the ⁴²Ti lifetime during this production test. The details of that measurement are given in a separate report [3].

II. Production of ³⁵K secondary beam

In March 2014, we produced and separated ³⁵K with MARS. ³⁵K is needed by the group of Prof. R.E. Tribble for the latest experiment in the series of measurements of β -delayed proton decay of proton-rich nuclei [4]. The ³⁵K was produced with the fusion-evaporation reaction (p,2n) in inverse kinematics with ³⁶Ar primary beam at 35 MeV/u. Hydrogen gas at a pressure of 2 atm and at a temperature of 77K was used in the MAS gas cell target.

In the planned experiment, the ³⁵K secondary beam will be slowed down and implanted into a thin silicon strip detector that is only ~45 μ m thick. Thus, the ³⁵K secondary beam must have a small momentum spread such that all the nuclei produced are implanted into the detector. For the ³⁵K production test, we set the MARS momentum slits (the "coffin slits") to ± 0.5 cm, which corresponds to a momentum spread of the secondary beam of $\Delta P/P \approx \pm 0.3\%$. With this momentum slit setting, we produced ³⁵K at a rate of 3.5 events/nC. This should give a production rate of between 350 and 1000 particles/sec of the ³⁵K, depending on how much primary beam will be available for the future experiment.

FIG. 2. Results of the ³⁵K production test.

The MARS target detector spectrum showing the final tune of the ³⁵K secondary beam is shown in Fig 2. While the ³⁵K is the most intense species shown in the secondary beam, about 45% of the secondary beam is from impurities. The most intense impurity is from the "tail" of the ³²Cl distribution. It was found that reducing the MARS gas cell pressure down to 1.5 atm of H₂ gas reduced the ³⁵K production rate down to 2.7 events/nC, but it also reduced the impurity ratio in the secondary beam to 34%. If the reduction of impurities will be important for the measurement, lower gas cell pressure seems to be one possible way of reducing the secondary beam impurities. It should be noted that most of the secondary beam impurities will not stop in the thin silicon strip detector or have low β-delayed proton or α -particle decay branching ratios relative to the ³⁵K. Thus, these impurities are not expected to cause problems in the future measurement. The 35 K β -delayed proton decay measurement is planned for June 2014.

III. Production of ⁹C and ⁸B secondary beams

Also in March 2014, we produced and separated ⁹C and ⁸B with MARS. ⁹C and ⁸B are needed by the group of Prof. G. Rogachev for their upcoming experiments with resonant elastic proton scattering using the Thick Target Inverse Kinematics (TTIK) method. These experiments will be similar to those that have been conducted in the past by V. Goldberg at TAMU [5]. The ⁹C secondary beam will be employed to study the unbound ¹⁰N nucleus and the ⁸B secondary beam will be used to study resonances in the ⁹C nucleus. Both experiments are expected to be conducted later this year.

For the ${}^{9}C$ production test, a ${}^{10}B$ primary beam at 30 MeV/u bombarded the MARS gas cell target. The gas cell target was filled with 2 atm of hydrogen gas at a temperature of 77K. The ${}^{9}C$ was produced with the fusion-evaporation reaction (p,2n) in inverse kinematics. The Q-value for the p(${}^{10}B, {}^{9}C$)2n reaction is -25.7 MeV. Thus, 30 MeV/u was chosen for the primary beam energy as a compromise between the production rate for ${}^{9}C$, which is better at higher primary beam energies, and the desire to have the ${}^{9}C$ at the lowest possible energy. The optimum setting for the ${}^{9}C$ production was found at the MARS D1 dipole setting of 443 A, which corresponds to a ${}^{9}C$ beam energy of 23.2 MeV/u. For the planned experiment, this energy will be reduced to ~10 MeV/u with degraders.

The optimized production rate for the ⁹C secondary beam was 4.1 events/nC, which will give $\sim 10^3$ particles/sec with 250 nA of ¹⁰B beam on target. The ⁹C secondary beam was relatively pure, although there is some contamination in the beam from α -particles and ³He. Some of this contamination will be removed in the future experiment by closing the slits of MARS.

FIG. 3. (left panel) Results of the ⁹C production test. The main contaminant of the secondary beam is from ³He. (right panel) Results of the ⁸B production test. The contributions from the ¹⁰C and other backgrounds will be reduced by the MARS slits for the planned experiments.

For the ⁸B production test, a ¹⁰B primary beam at 24 MeV/u bombarded the MARS gas cell target. The gas cell target was filled with 2 atm of hydrogen gas at a temperature of 77K. The ⁸B was produced with the (p,t) reaction in inverse kinematics. The Q-value for the $p(^{10}B,^{8}B)t$ reaction is -18.5 MeV. Thus, 24 MeV/u was chosen for the primary beam energy to have a good production rate for ⁸B, while still producing it at a reasonable energy. The optimum setting for the ⁸B production in case was found at the MARS D1 dipole setting of 451 A, which corresponds to a ⁸B beam energy of 21.1 MeV/u. For the planned experiment, this energy will also be reduced to ~10 MeV/u with degraders.

The optimized production rate for the ⁸B secondary beam was 130 events/nC, which will give $\sim 3*10^4$ particles/sec with 250 nA of ¹⁰B beam on target. The ⁸B secondary beam was relatively pure, although there is some contamination in the beam from α -particles. Some of this contamination will be removed in the future experiment by closing the slits of MARS and focusing the beam better with the quadrupole magnets of MARS.

The MARS target detector spectra for the ⁹C and ⁸B secondary beams are shown in Fig. 3.

IV. Production of ²⁰O secondary beam

The final production tests for this year were to produce and separate ²⁰O secondary beam with MARS at two energies. ²⁰O secondary beam was requested by group of Prof. Rogachev and by a group from Washington University in St. Louis (WUSTL) for separate experiments planned for later this year.

In the first production test, an ¹⁸O primary beam at 15 MeV/u bombarded the MARS gas cell target. The gas cell was filled with ⁴He gas at a pressure of 2 atm and a temperature of 77K. The reaction of ¹⁸O+⁴He had been employed previously to produce ²⁰O with MARS in 2007 [6]. In the previous measurement, it was noted that in addition to ²⁰O, this reaction produced other secondary beams in charge states with the same charge-to-mass (q/m) ratio, and in some cases, the same mass as the ²⁰O⁺⁸. To properly identify these contaminants in the secondary beam, a 143 µm thick position sensitive silicon detector was employed as the ΔE detector in the MARS focal plane and a 500 µm thick silicon detector was used behind it. Thus the particle identification could be verified with both the ΔE vs. Y-position and ΔE vs. E techniques.

The result of the ²⁰O production test with the ¹⁸O+⁴He reaction is shown in Fig. 4, left panel. The secondary beam contained 6 species, ²⁰Ne⁺⁸, ²⁰F⁺⁸, ²⁰O⁺⁸, ¹⁵N⁺⁶, ¹⁵C⁺⁶ and ¹⁰Be⁺⁴. These other species cannot be separated from the ²⁰O⁺⁸ by MARS because they all have q/m = 0.4. Of particular note is the ²⁰F⁺⁸, which is produced at 2 times the rate of the ²⁰O⁺⁸. The best production rate of ²⁰O⁺⁸ obtained was 9.8 eV/nC at the MARS D1 dipole setting of 450 A. This corresponds to a secondary beam energy of 8.7 MeV/u for the ²⁰O⁺⁸. With about 115 nA of ¹⁸O beam on target, ²⁰O⁺⁸ rates of ~10³ particles/sec are possible.

In the second production test, a ²²Ne primary beam at 31 MeV/u bombarded the MARS gas cell target. This time, the gas cell was filled with ²H gas at a pressure of 2 atm and a temperature of 77K. The reaction of ²²Ne+²H was employed because LISE++ simulations [2] predicted that it would have would less contamination in the secondary beam from ²⁰F⁺⁸. Further, the simulation also predicted that ²²Ne+²H would have a better cross section for ²⁰O at the higher beam energy requested by the WUSTL group. To

identify the reaction products, the same 143 μ m thick position sensitive silicon detector was employed as the ΔE detector in the MARS focal plane and a 500 μ m thick silicon detector was used behind it.

The result of the ²⁰O production test with the ²²Ne+²H reaction is shown in Fig. 4, right panel. The secondary beam again contained 6 species, ²⁰Ne⁺⁸, ²⁰F⁺⁸, ²⁰O⁺⁸, ¹⁵N⁺⁶, ¹⁵C⁺⁶ and ¹⁰Be⁺⁴. These other species cannot be separated from the ²⁰O⁺⁸ by MARS again because they all have q/m = 0.4. The best production rate of ²⁰O⁺⁸ obtained was 10.1 eV/nC at the MARS D1 dipole setting of 818 A. This corresponds to a secondary beam energy of 25.0 MeV/u for the ²⁰O⁺⁸. With about 100 nA of ²²Ne beam on target, ²⁰O⁺⁸ rates of 10³ particles/sec again are possible, which is similar to the lower energy case. However, with the ²²Ne+²H reaction, ²⁰O⁺⁸ is the most intense species in the secondary beam and is more than 2 times as intense as the ²⁰F⁺⁸. This result is consistent with what was predicted by the LISE++ simulation.

FIG. 4. (left panel) Results of the ²⁰O production test with the ¹⁸O+⁴He reaction at 15 MeV/u. Components of the secondary beam with q/m=0.4 can not be separated from the ²⁰O. The final slits of MARS were left open in this experimental run. (right panel) Results of the ²⁰O production test with the ²²Ne+²H reaction at 31 MeV/u. The results are similar to the lower energy case, except that the ²⁰O in this case is the most intense component of the nuclei with q/m = 0.4. The final slits of MARS were also closed around the ²⁰O in this experimental run.

The contamination in the ²⁰O secondary beams will require event-by-event tracking of the secondary beam. The planned experiments will take this consideration into account.

- [1] R.E. Tribble, R.H. Burch and C.A. Gagliardi, Nucl. Instrum. Methods Phys. Res. A285, 441 (1989).
- [2] O.B. Tarasov and D. Bazin, Nucl. Instrum. Methods Phys. Res. B266, 4657 (2008).
- [3] H.I. Park et al., Progress in Research, Cyclotron Institute, Texas A&M University (2013-2014).
- [4] L. Trache *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2007-2008), p.I-29; <u>http://cyclotron.tamu.edu/2007 Progress Report/index.html</u>.

- [5] V. Goldberg *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2008-2009), p.I-21; <u>http://cyclotron.tamu.edu/2009 Progress Report/index.html</u>.
- [6] C. Fu et al., Progress in Research, Cyclotron Institute, Texas A&M University (2007-2008), p.I-38; <u>http://cyclotron.tamu.edu/2007 Progress Report/index.html</u>.